Borates—Crystal Structures of Prospective Nonlinear Optical Materials: High Anisotropy of the Thermal Expansion Caused by Anharmonic Atomic Vibrations

نویسندگان

  • Rimma Bubnova
  • Sergey Volkov
  • Barbara Albert
  • Stanislav Filatov
چکیده

In the present study the thermal structure evolution is reviewed for known nonlinear optical borates such as β-BaB2O4, LiB3O5, CsLiB6O10, Li2B4O7, K2Al2B2O7, and α-BiB3O6, based on single-crystal and powder X-ray diffraction data collected over wide temperature ranges. Temperature-dependent measurements of further borates are presented for the first time: α-BaB2O4 (295–673 K), β-BaB2O4 (98–693 K), LiB3O5 (98–650 K) and K2Al2B2O7 (98–348 K). In addition to the established criteria for nonlinear optical (NLO) properties of crystals, here the role of the anisotropy and anharmonicity of the thermal vibrations of atoms is analysed as well as changes in their coordination spheres and the anisotropy of the thermal expansion of the crystal structure. Non-centrosymmetric borates, especially those that have NLO properties, often show distinct anisotropies for each cation in comparison to centrosymmetric borates. All considered NLO borates contain BO3 triangles, which are the principal cause of the strong anisotropy of the thermal expansion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Renormalized Phonon Microstructures at High Temperatures from First-Principles Calculations: Methodologies and Applications in Studying Strong Anharmonic Vibrations of Solids

While the vibrational thermodynamics of materials with small anharmonicity at low temperatures has been understood well based on the harmonic phonons approximation, at high temperatures, this understandingmust accommodate how phonons interact with other phonons or with other excitations. To date the anharmonic lattice dynamics is poorly understood despite its great importance, and most studies ...

متن کامل

Advanced Post-Processing Techniques of Molecular Dynamics Simulations in Studying Strong Anharmonic Thermodynamics of Solids

While the vibrational thermodynamics of materials with small anharmonicity at low temperatures has been understood well based on the harmonic phonons approximation; at high temperatures, this understanding must accommodate how phonons interact with other phonons or with other excitations. We shall see that the phonon-phonon interactions give rise to interesting couplingproblems, and essentially...

متن کامل

Novel structure of optical add/drop filters and multi-channel filter based on photonic crystal for using in optical telecommunication devices

In this paper, Using a 2D photonic crystal and a novel square ring resonator,several compact and simple structures have been introduced in the present paper toconstruct optical add/drop filters and multi-channel filter. The difference structures hasbeen designed and simulated by using the proposed square ring resonator and differentdropping waveguides. To do analyses, th...

متن کامل

INVESTIGATION ON GROWTH AND CHARACTERIZATION OF NONLINEAR OPTICAL DICHLORO-DIGLYCINE ZINC II SINGLE CRYSTAL

The study of amino acid based nonlinear optical (NLO) materials with optimum physical properties is an important area due to their practical applications such as optical communication, optical computing, optical information processing, optical disk data storage, laser fusion reactions, laser remote sensing, colour display, medical diagnostics, etc. Also, microelectronic industries require cryst...

متن کامل

Ultra-Fast All-Optical Symmetry 4×2 Encoder Based on Interface Effect in 2D Photonic Crystal

This paper deals with the design and simulation of all-optical 4×2 encoderusing the wave interference effect in photonic crystals. By producing 4 opticalwaveguides as input and two waveguides as output, the given structure was designed.The size of the designed structure is 133.9 μm2. The given all-optical encoder has acontrast ratio of 13.2 dB, the response time of 0.45 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017